nSec-1 (munc-18) interacts with both primed and unprimed syntaxin 1A and associates in a dimeric complex on adrenal chromaffin granules.
نویسندگان
چکیده
The target-SNARE syntaxin 1A is an essential component of the core machinery required for regulated exocytosis (where SNARE is the soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor). Syntaxin 1A interacts with a variety of other proteins, two of which, N-ethylmaleimide-sensitive fusion protein (NSF) and alpha-soluble NSF attachment protein (alpha-SNAP) have been suggested to impart a conformational rearrangement on this protein during a reaction referred to as priming. We have studied the effect of the primed state on the binding properties of syntaxin 1A and we have confirmed that primed syntaxin 1A no longer associated with alpha-SNAP or its cognate vesicle-SNARE, vesicle-associated membrane protein (VAMP). Under such conditions, however, it retained the ability to bind to nSec-1. It has been demonstrated that nSec-1, a regulatory protein also involved in neuronal exocytosis, binds syntaxin 1A with high affinity in vitro, although evidence for this physical interaction occurring in vivo has proven elusive. We analysed the subcellular distribution of these two proteins in fractions from bovine adrenal medulla and detected syntaxin 1A and nSec-1 in both plasma membrane and chromaffin-granule fractions. Using a cross-linking approach with chromaffin-granule membranes we detected a putative dimeric complex composed of approx. 54% total granule membrane nSec-1 and approx. 30% total syntaxin 1A. The results of this study therefore suggest the possibility of nSec-1 interactions with primed syntaxin 1A and demonstrate a potentially significant interaction of syntaxin 1A and nSec-1 on the membranes of chromaffin granules.
منابع مشابه
Regulation of Munc-18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings.
The Munc-18-syntaxin 1A complex has been postulated to act as a negative control on the regulated exocytotic process because its formation blocks the interaction of syntaxin with vesicle SNARE proteins. However, the formation of this complex is simultaneously essential for the final stages of secretion as evidenced by the necessity of Munc-18's homologues in Saccharomyces cerevisiae (Sec1p), Dr...
متن کاملA dual function for Munc-18 in exocytosis of PC12 cells.
Munc-18 interacts with the SNARE protein syntaxin and is supposed to influence transmitter release by controlling the formation of exocytosis-relevant SNARE complexes. Here, we used combined biochemical and physiological analyses to study the role of the Munc-18/syntaxin interaction in large dense core vesicle (LDCV) exocytosis of neuroendocrine PC12 cells. We compared two Munc-18 mutants carry...
متن کاملMunc-18-2 regulates exocytosis of H(+)-ATPase in rat inner medullary collecting duct cells.
Exocytic insertion of H(+)-ATPase into the apical membrane of inner medullary collecting duct (IMCD) cells is dependent on a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein target receptor (SNARE) complex. In this study we determined the role of Munc-18 in regulation of IMCD cell exocytosis of H(+)-ATPase. We compared the effect of acute cell acidification (the stimulus for I...
متن کاملPhosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin.
Munc-18/n-Sec1/rbSec1 interacts with syntaxin and this interaction inhibits the association of vesicle-associated membrane protein (VAMP)/synaptobrevin and synaptosomal-associated protein of 25 kDa (SNAP-25) with syntaxin. Syntaxin, VAMP, and SNAP-25 serve as soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptors essential for docking and/or fusion of synaptic ves...
متن کاملGranuphilin molecularly docks insulin granules to the fusion machinery
The Rab27a effector granuphilin is specifically localized on insulin granules and is involved in their exocytosis. Here we show that the number of insulin granules morphologically docked to the plasma membrane is markedly reduced in granuphilin-deficient beta cells. Surprisingly, despite the docking defect, the exocytosis of insulin granules in response to a physiological glucose stimulus is si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 342 Pt 3 شماره
صفحات -
تاریخ انتشار 1999